
Introduction to Provably Fair Gaming Algorithms
(5th Draft)

Kristóf Poduszló

July 13, 2017

Abstract
As of today, the majority of the online gaming industry utilizes black

box algorithms, forcing users to trust a third-party service for generating
unbiased random data. Lately, a new paradigm has started to spread
through the industry, paving the way towards transparent and verifiable
algorithms being a standard in digital games.

1 Introduction
Provably fair algorithms bring a new era of opportunities to the online gaming
industry. Unlike black box algorithms widely used amongst luck-based games
involving stake [7, 1], their fair counterparts are verifiable by anyone, including
every participant of a particular game [4].

The algorithms described in this document represent the culmination of
research about commitment schemes [3, 13], including, but not limited to,
flipping a coin [2] [10, pp. 243–245] or playing a fair game of poker [14] [10,
pp. 246–250] over the wire.

2 Concepts
2.1 Verifiability of pseudorandom outputs
Pseudorandom number generators provide a sequence of seemingly random
outputs initialized by a seed. The presence of an initialization parameter provides
the opportunity to use it as a key for verification of results.

A seed used in the algorithms covered by this document should consist of
two main parts:

• hostSeed: Shall be kept in secret until the end of a particular game. Similar
to a private key in asymmetrical cryptography.

• publicSeed: Players should only generate or contribute to it (with equal
amounts of influence) after a commitment (e.g. cryptographic hash) of
hostSeed has been broadcast to every participant of a particular game.

1



Remark 2.1.1. Broadcasting a commitment of hostSeed amongst players
not only protects hostSeed from being revealed early, but serves as a
verification of integrity, proving that during a game, hostSeed could not
have been tampered without notice.

Using a mix of the entire hostSeed and publicSeed (e.g. by concatenat-
ing them) as an initialization parameter for randomization, every participant
may have an influence on the outcome of results, with a negligible chance of
manipulation1 in favor of any entity.
Remark 2.1.2. In a peer-to-peer network, every player is also a host, resulting
in the presence of multiple hostSeeds and publicSeeds possibly paired to a
privateKey and a corresponding publicKey for every participant. The publicKey
of each player may also be used as commitments.

2.2 Initialization cycle
A random hostSeed must be generated to initiate a new game.

• Whether only a single player is betting against an operator, a hostSeed
may be generated by the host using any source of entropy (preferably a
true random number generator).

• If multiple players are betting against an operator, a provably fair seeding
event may be used to generate hostSeed.

Definition 2.2.1. A provably fair seeding event [9] makes it possible to
generate publicSeed using a trustless randomization service (e.g. the hash
of a specific upcoming block in the blockchain of a cryptocurrency), disal-
lowing participants to have a direct influence on in-game randomization.

Remark 2.2.2. When multiple players participate in a game, hostSeed shall
not be generated by a single entity because that would allow a coalition
to gain advantage over honest players by whispering hostSeed early to a
selected group of participants.

• The problem of multiple players betting against each other may be solved
by a mental poker protocol [14], which is beyond the scope of this document.

Once hostSeed is revealed (optimally, at the end of a particular game),
outputs generated by the algorithm become reproducible, proving that random
results could not have been manipulated in favor of any entity.

2.3 Definition and properties of a provably fair algorithm
Definition 2.3.1. An algorithm behind a game is provably fair if and only if
every participant has the same amount of influence on in-game randomization
in a verifiable manner.
Remark 2.3.2. Participants include players and, if present, trustless seeding
services.

1Given a commitment scheme which is computationally infeasible to break (e.g. based on a
secure hash algorithm).

2



Proposition 2.3.3. Necessary criteria of a provably fair algorithm

(i) Determinism (always produce the same output given a particular input).

(ii) A combination of the entire hostSeed and publicSeed is used for generating
outputs (e.g. a keyed hash function2 like HMAC using hostSeed as key and
publicSeed as message).

(iii) The integrity of hostSeed shall be verifiable by players (e.g. by publishing
its hash prior to the start of every particular game).

(iv) The algorithm must be public for every participant of the game.

3 Algorithms
In this section, numerous generic fair algorithms will be proposed for games
which are influenced by randomization, including, but not limited to, rolling a
dice and shuffling a deck of cards.

3.1 Generating a single random output
The output generation function should be hard to invert [8, pp. 30–35] in order
to protect outputs from being predictable before hostSeed is revealed. While
any entity in possession of hostSeed may predict the outputs of a provably fair
algorithm, there should be no concern about fairness until every player has the
same amount of information (preferably nothing) about hostSeed during a game.

3.2 Generating a sequence of random outputs
When multiple players participate in a game with numerous betting rounds
following output generation, a new publicSeed, influenced by every player or a
trustless service, shall be used before each round in which bets may be placed.

In order to generate multiple outputs using a single set of seeds, a crypto-
graphic nonce [12, pp. 397–398] should be utilized. A nonce used in provably
fair algorithms shall be unique and predictable (e.g. it may represent the number
of consecutive bets using the same hostSeed, assuming the probability of a
hostSeed collision is negligible).

A nonce may only be used once for a particular seed set, and shall be
appended to the initial publicSeed, producing a unique output for consecutive
bets made using the same seeds.

Theoretically, an arbitrarily large output sequence can be generated using
a bijective mathematical function f : N → R (e.g. f(x) = x), agreed upon the
initialization cycle of a game (until a commitment about hostSeed is made), as
a nonce sequence provider.

Multiple parameters may be used to construct a nonce if necessary (e.g. when
shuffling a deck of cards in a turn-based game, nonce should consist of both the
round identifier and the shuffle state).

2Unforgeability protects outputs from being predictable before hostSeed is revealed. Using
unkeyed hash functions or pseudorandom number generators is strongly discouraged.

3



4 Examples
Remark. Ensuring uniform distribution of random outputs is not in the scope of
this document.

4.1 Generating a single random integer
The following functions generate a random integer based on a variant of the
practically non-invertible HMAC (hash-based message authentication code) [11]
function using hostSeed as key and publicSeed as message.

Algorithm 4.1.1 Generating a random integer in the range [min, max[
function RandomInt(hostSeed, publicSeed, min, max)

return min + (HMAC(hostSeed, publicSeed) mod (max−min))
end function

Algorithm 4.1.2 Rolling a dice
function RollDice(hostSeed, publicSeed)

return RandomInt(hostSeed, publicSeed, 1, 6)
end function

4.2 Generating a sequence of random integers
If multiple random outputs are required throughout a particular game, a nonce
may be used to produce a sequence of random results. A nonce should be
concatenated to publicSeed using a separator (e.g. ” : ”).

Algorithm 4.2.1 Shuffling an array (Fisher–Yates shuffle [6, 5])
function Shuffle(hostSeed, publicSeed, array)

n← array.length
for i← 0, n− 2 do

j ← RandomInt(hostSeed, publicSeed + ” : ” + i, i, n)
Swap(array[i], array[j])

end for
end function

References
[1] Are Online Casinos Rigged? We Explore the Facts. url: https://casino.

org/rigged-casino-guide (visited on 06/19/2017).
[2] Manuel Blum. “Coin Flipping by Telephone - A Protocol for Solving

Impossible Problems”. In: SIGACT News 15.1 (Winter-Spring Jan. 1983),
pp. 23–27. issn: 0163-5700. doi: 10.1145/1008908.1008911.

[3] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum Disclosure
Proofs of Knowledge”. In: Journal of Computer and System Sciences
37.2 (Oct. 1988), pp. 156–189. issn: 0022-0000. doi: 10 .1016 / 0022-
0000(88)90005-0.

4

https://casino.org/rigged-casino-guide
https://casino.org/rigged-casino-guide
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0


[4] Vitalik Buterin. The Bitcoin Gambling Diaspora. Aug. 3, 2013. url: https:
//bitcoinmagazine.com/articles/the-bitcoin-gambling-diaspora-
1375548799 (visited on 06/18/2017).

[5] Richard Durstenfeld. “Algorithm 235: Random permutation”. In: Com-
munications of the ACM 7.7 (July 1964), p. 420. issn: 0001-0782. doi:
10.1145/364520.364540.

[6] Ronald A. Fisher and Frank Yates. Statistical tables for biological, agricul-
tural and medical research. 3rd ed. 1948, pp. 26–27.

[7] Sally M. Gainsbury, Jonathan Parke, and Niko Suhonen. “Consumer
attitudes towards internet gambling: perceptions of responsible gambling
policies, consumer protection, and regulation of online gambling sites”.
In: Computers in Human Behavior 29.1 (Jan. 2013), pp. 235–245. doi:
10.1016/j.chb.2012.08.010.

[8] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, Jan. 18, 2007. isbn: 9780521035361. doi:
10.1017/CBO9780511546891.

[9] Ryan Havar. Bustabit.com Provably Fair Seeding Event. Jan. 12, 2015.
url: https://bitcointalk.org/index.php?topic=922898 (visited on
07/02/2017).

[10] James S. Kraft and Lawrence C. Washington. An Introduction to Number
Theory with Cryptography. CRC Press, Aug. 1, 2013. isbn: 9781482214420.
url: https://books.google.com/books?id=mYLSBQAAQBAJ.

[11] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104. RFC Editor, Feb. 1997. doi: 10.
17487/RFC2104.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. 1st ed. Discrete Mathematics and Its Applications.
CRC Press, Oct. 16, 1996. isbn: 9780849385230.

[13] Moni Naor. “Bit Commitment Using Pseudorandomness”. In: Journal of
Cryptology 4.2 (Jan. 1991), pp. 151–158. issn: 0933-2790. doi: 10.1007/
BF00196774.

[14] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. “Mental Poker”.
In: The Mathematical Gardner. Ed. by David A. Klarner. 1981, pp. 37–43.
isbn: 9781468466867. doi: 10.1007/978-1-4684-6686-7_5.

5

https://bitcoinmagazine.com/articles/the-bitcoin-gambling-diaspora-1375548799
https://bitcoinmagazine.com/articles/the-bitcoin-gambling-diaspora-1375548799
https://bitcoinmagazine.com/articles/the-bitcoin-gambling-diaspora-1375548799
https://doi.org/10.1145/364520.364540
https://doi.org/10.1016/j.chb.2012.08.010
https://doi.org/10.1017/CBO9780511546891
https://bitcointalk.org/index.php?topic=922898
https://books.google.com/books?id=mYLSBQAAQBAJ
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/978-1-4684-6686-7_5

	Introduction
	Concepts
	Verifiability of pseudorandom outputs
	Initialization cycle
	Definition and properties of a provably fair algorithm

	Algorithms
	Generating a single random output
	Generating a sequence of random outputs

	Examples
	Generating a single random integer
	Generating a sequence of random integers


